Summary
This invention presents a robotic wrist and gripper that operate with three independent degrees of freedom (yaw, pitch and roll) for increased dexterity in minimally invasive surgical procedures. This is the smallest robotic wrist of its kind, and due to its size and unparalleled dexterity, this wrist enables complex surgical maneuvers for minimally invasive procedures in highly confined spaces. Examples of surgical areas benefiting from use of this wrist include natural orifice surgery, single port access surgery, and minimally invasive surgery. In particular, the proposed wrist allows for very high precision roll about the longitudinal axis of the gripper while overcoming problems of run-out motion typically encountered in existing wrists. Thus this wrist is particularly suitable for extreme precision maneuvers for micro-surgery in confined spaces.
Challenges for Minimally Invasive Surgical Tools
Technology Description
This revolutionary robotic joint greatly expands the capabilities of minimally invasive surgical tools by providing the dexterity to operate efficiently in tight spaces. The joint’s dexterity comes from its ability to operate with three completely independent degrees of freedom: pitch, yaw, and rotation about its primary axis. The joint is especially suited for use with a continuum robots during minimally invasive surgical procedures but has the potential to improve almost any tool, robotic or not, used in confined spaces.
Commercial Applications
Minimally invasive surgery is a $35 billion industry that is slated to grow by about 7% each year. Almost all minimally invasive tools and procedures would benefit from the advantages provided by this technology.
Unique Properties
Intellectual Property Status