Summary
This proportional actuator developed at Vanderbilt University is a superior source of controllable power for mobile robots. It utilizes monopropellant or hypergolic bipropellant fuel sources in a controlled manner for more efficient and effective untethered mobile robots performing human mechanical tasks over a prolonged period of time.
Addressed Need
Technology Description
The invention uses a monopropellant powered actuator to increase the energetic performance of the system to ten times that of the state-of-the-art battery/servomotor combination. The system uses monopropellant or hypergolic liquids (H2O2 or HAN based fuels) to power any fluid-powered actuator. The increase in energetic performance of the system leads to extended run time and efficiency, increasing the usefulness of machines such as self-powered robots. Although a variety of configurations are possible, the system commonly consists of a blow down fuel tank that delivers fuel to a catalyst producing a gaseous product. Proportional valves control the gas flow to the actuator, actuating the piston and powering the system in a highly controlled manner.
Commercial Applications
Unique Properties and Competitive Advantages
Intellectual Property Status